Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >RAG应用开发实战02-相似性检索的关键 - Embedding

RAG应用开发实战02-相似性检索的关键 - Embedding

作者头像
JavaEdge
发布于 2024-05-25 06:46:25
发布于 2024-05-25 06:46:25
1880
举报
文章被收录于专栏:JavaEdgeJavaEdge

1 文本Embedding

将整个文本转化为实数向量的技术。

Embedding优点是可将离散的词语或句子转化为连续的向量,就可用数学方法来处理词语或句子,捕捉到文本的语义信息,文本和文本的关系信息。

◉ 优质的Embedding通常会让语义相似的文本在空间中彼此接近

◉ 优质的Embedding相似的语义关系可以通过向量的算术运算来表示:

2 文本Embedding模型的演进与选型

目前的向量模型从单纯的基于 NLI 数据集(对称数据集)发展到基于混合数据(对称+非对称)进行训练,即可以做 QQ召回任务也能够做 QD 召回任务,通过添加 Instruction 来区分这两类任务,只有在进行 QD 召回的时候,需要对用户 query 添加上 Instruction 前缀。

3 VDB通用Embedding模型

模型选择:

GPU资源:

4 VDB垂类Embedding模型

用户提供垂类文档数据,VDB对模型进行微调,助力垂类应用效果更进一步。

优化1:对比学习拉近同义文本的距离,推远不同文本的距离

优化2:短文本匹配和长文本匹配使用不同prompt,提升非对称类文本效果

优化3:预训练阶段提升基座模型面向检索的能力,对比学习阶段提高负样本数

5 存储、检索向量数据

5.1 为啥需要一个专用的向量数据库
  1. 查询方式与传统数据库存在区别
  2. 简单易用,无需关心细节
  3. 为相似性检索设计,天生性能优势
5.2 腾讯云向量数据库的优势

“首家”:

  • 通过信通院的标准化性能和规模测试
  • 支持千亿级向量规模和最高500W QPS

自研:

  • 内核源自集团自研OLAMA引擎
  • 内部已有40+业务接入

性价比:

  • 性能领先业内平均水平1.5
  • 同时客户成本降低20%

6 VDB优势

流程简化

模型简化:

共享GPU集群:

7 腾讯云向量数据库:消除大模型幻觉,加速大模型在企业落地

7.1 端到端AI套件,AGI时代的知识库解决方案

提供一站式知识检索方案,实现业界内最高召回率、大幅降低开发门槛,帮助企业快速搭建RAG应用,解决大模型幻觉问题。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-05-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
语义检索-BAAI Embedding语义向量模型深度解析:微调Cross-Encoder以提升语义检索精度
语义向量模型(Embedding Model)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源
汀丶人工智能
2024/07/09
6590
语义检索-BAAI Embedding语义向量模型深度解析:微调Cross-Encoder以提升语义检索精度
从零开始优化 RAG 流程的终极指南,解决检索增强生成的核心挑战
首先,我们将 RAG 工作流程分为三个部分,以增强我们对 RAG 的理解,并优化每个部分以提高整体性能:
致Great
2025/02/22
6250
从零开始优化 RAG 流程的终极指南,解决检索增强生成的核心挑战
一文详尽之Embedding(向量表示)!
文本是一类非常重要的非结构化数据,如何表示文本数据一直是机器学习领域的一个重点研究方向。文本向量就是深度学习时代产生的一种文本表示的方法。
Datawhale
2025/01/19
2.5K0
一文详尽之Embedding(向量表示)!
LLMOps实战(一):DeepSeek+RAG 协同构建企业知识库全流程指南
首先解释下什么是 LLMOps,Large Language Model Operations是专注于大语言模型全生命周期管理的工程实践,涵盖从模型开发、部署、监控到持续优化的系统性流程。其核心目标是提升LLM应用的可靠性、效率与可控性,解决大模型在实际落地中的技术与管理挑战。
范赟鹏
2025/03/24
8200
评估与优化RAG指南:提高准确性与质量的最佳实践
本指南将教你如何评估一个 RAG 系统的准确性 和质量。你将学会通过测试搜索精度、召回率、上下文相关性和响应准确性来保持 RAG 系统的性能。
AgenticAI
2025/03/18
1210
评估与优化RAG指南:提高准确性与质量的最佳实践
47.3K star!这款开源RAG引擎真香!文档理解+精准检索+可视化干预,一站式搞定!
嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法
小华同学ai
2025/04/01
1830
47.3K star!这款开源RAG引擎真香!文档理解+精准检索+可视化干预,一站式搞定!
解读 RAG 中的 embedding model
在当前人工智能潮流中,RAG 技术备受关注,诸如 RAGFlow、Qanything、Dify、FastGPT 等 RAG 引擎逐渐受到广泛关注。在这些引擎的背后,嵌入模型扮演着关键角色,对于整个系统起着至关重要的作用。让我们一同探究这个神秘的嵌入模型!
福大大架构师每日一题
2025/03/13
1220
解读 RAG 中的 embedding model
RAG 修炼手册|一文讲透 RAG 背后的技术
今天我们继续剖析 RAG,将为大家详细介绍 RAG 背后的例如 Embedding、Transformer、BERT、LLM 等技术的发展历程和基本原理,以及它们是如何应用的。
Zilliz RDS
2024/04/11
1.8K0
RAG 修炼手册|一文讲透 RAG 背后的技术
检索算法小结
上一篇文章介绍了大模型应用利器--RAG。在RAG中当然少不了检索。检索算法在信息检索、搜索引擎和推荐系统等领域中扮演着至关重要的角色。它们的核心任务是根据用户查询从大量数据中找出最相关的信息。本文就对检索算法进行以下小结。
languageX
2024/07/01
3220
RAG:我不只是一个检索器!
年初在我独到的技术见解:LLM的演进与发展文章中和大家分享了LLM的应用和发展,其中有简单介绍过RAG技术,也提到我个人建议在大模型的应用中,能用prompt搞定就别碰RAG,能利用好RAG技术实现需求就别去训练模型,非要训练模型能sft就别pretrain,以上三个大招都用上都实现不了你的需求,非要训自己的垂域大模型,那就快点准备数据,真正应用的时候,估计还是躲不掉三面三步。(不针对算法人员,我说应用呢~)
languageX
2024/06/22
1K0
RAG:我不只是一个检索器!
AI时代的阅读革新!微信读书基于腾讯云ES的“AI问书”RAG最佳实践
当我们需要深入了解一个知识点时,我们可能会通过阅读大量的书籍进行总结,或者是通过浏览器搜索相关的文章,不论是哪种方式,都需要我们花很多时间去进行知识过滤与提取,那么,有没有一个方案,能够让我们能够快速的了解该知识点的含义,并标注来源与作者以及进行关联内容推荐呢?
腾讯QQ大数据
2024/07/01
8310
AI时代的阅读革新!微信读书基于腾讯云ES的“AI问书”RAG最佳实践
一脚踹开 RAG 大门,深入它所面临的挑战
思路:构建几十万量级的数据,然后利用这些数据对大模型进行微调,以将额外知识注入大模型;
掘金安东尼
2024/04/12
5020
一脚踹开 RAG 大门,深入它所面临的挑战
基于 Milvus + LlamaIndex 实现高级 RAG
随着大语言模型(LLM)技术的发展,RAG(Retrieval Augmented Generation)技术得到了广泛探讨和研究,越来越多的高级 RAG 检索方法也随之被人发现,相对于普通的 RAG 检索,高级 RAG 通过更深化的技术细节、更复杂的搜索策略,提供出了更准确、更相关、更丰富的信息检索结果。本文首先讨论这些技术,并基于 Milvus 给出一个实现案例。
Zilliz RDS
2024/05/31
7960
基于 Milvus + LlamaIndex 实现高级 RAG
干货!带你了解7种检索增强生成 (RAG) 技术
在简单RAG中,大型语言模型(LLM)接收用户查询,在向量存储库中进行相似性搜索或在知识图谱中进行关系搜索,然后基于检索到的信息生成答案。
致Great
2025/01/06
5.1K0
干货!带你了解7种检索增强生成 (RAG) 技术
LLMOps实战(四):大模型开发 RAG 工作流中 Embedding 模型选型全解析
在大模型开发中,检索增强生成(RAG)工作流是一种将外部知识检索与语言模型生成相结合的有效方法。它能有效避免大模型产生幻觉问题,提高回答的准确性和可靠性。而 Embedding 模型在 RAG 工作流中起着关键作用,它负责将文本、结构化数据等转换为向量表示,以便进行高效的相似度检索。
范赟鹏
2025/03/29
2900
QQ浏览器是如何提升搜索相关性的?
导言 | 搜索相关性主要指衡量Query和Doc的匹配程度,是信息检索的核心基础任务之一,也是商业搜索引擎的体验优劣最朴素的评价维度之一。本文作者刘杰主要介绍QQ浏览器搜索相关性团队在相关性系统及算法方面的实践经历。值得一提的是,本文会特别分享在QQ浏览器搜索、搜狗搜索两个大型系统融合过程中,在系统融合、算法融合、算法突破方面的实践经验。希望对搜索算法以及相关领域内的同学有帮助。 业务介绍 搜索业务是QQ浏览器的核心功能之一,每天服务于亿万网民的查询检索,为用户提供信息查询服务,区别于一些垂直领域的站内搜
腾讯云开发者
2023/01/10
1.8K0
QQ浏览器是如何提升搜索相关性的?
【RAG】001.1-RAG相关核心概念
RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索与生成模型的混合架构,旨在提升生成的准确性和可信度。其核心概念可归纳为以下六个方面:
訾博ZiBo
2025/03/26
2230
Elasticsearch RAG案例:混合搜索的相关性调优
我们在上一篇文章《Elasticsearch案例:百行代码实现腾讯ES帮助文档的RAG》中给大家介绍了如何通过一个完整的搜索解决方案来快速实现 RAG ,其重点落在效率上 —— 完整而便捷的解决方案套件,使我们整个RAG的构建和上线过程事半功倍。而本文,我们则将重点落在搜索效果上,如何适配各种情况(不同的用户搜索习惯以及可能的缺陷数据),并达到最优效果。
点火三周
2023/11/16
4.2K0
Elasticsearch RAG案例:混合搜索的相关性调优
拿下SOTA!最强中文Embedding模型对标OpenAI,技术路线公开
商汤「日日新 5.0」在中文大模型测评基准SuperCLUE中,成为首个超越GPT-4 Turbo的国产大模型;在OpenCompass的基准表现中,客观评测超过GPT-4 Turbo,主观评测已超过GPT-4o位列第一。
新智元
2024/06/17
5770
拿下SOTA!最强中文Embedding模型对标OpenAI,技术路线公开
微信向量检索分析一体化数仓探索:OLAP For Embedding
在过去的一年里,大型语言模型 (LLM) 以及 ChatGPT 等产品吸引了全世界的想象力,推动新一轮技术浪潮。embedding 和 vector search(向量搜索)的概念是支持推荐、问答、图像搜索等功能的核心。我们发现社区中“向量搜索”的兴趣显著增加;具体来说,大家感兴趣了解的是:何时需要专门向量数据库,何时不需要?相比于语义性检索引擎(ES)与专业的高性能检索服务,OLAP 数仓的向量检索能力在场景有何区别?
腾讯技术工程官方号
2023/10/27
1K0
微信向量检索分析一体化数仓探索:OLAP For Embedding
推荐阅读
相关推荐
语义检索-BAAI Embedding语义向量模型深度解析:微调Cross-Encoder以提升语义检索精度
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档