Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >注意力机制可解释吗?这篇ACL 2019论文说……

注意力机制可解释吗?这篇ACL 2019论文说……

作者头像
zenRRan
发布于 2019-06-23 12:24:53
发布于 2019-06-23 12:24:53
4890
举报

阅读大概需要13分钟 跟随小博主,每天进步一丢丢

转载自:机器之心

作者:Sofia Serrano、Noah A. Smith

注意力机制最近推动了一系列 NLP 任务的发展。由于注意力层可以计算层的表征权重,也被认为可以用于发现模型认为重要的信息(如特定的语境词语)。研究人员通过修改已训练的文本分类模型中的注意力权重,测试了这一假设。并且分析了导致模型预测发生变化的原因。研究人员观察到,尽管在一些案例中,高注意力权重对模型的预测有更高的影响,但他们也发现了许多和这一现象不同的案例。研究者认为,虽然注意力机制预测了输入部分相对于模型整体的重要性,但这不是一个保险的说明重要性的方法。

此外,相比之前机器之心报道的注意力能否提高模型可解释性的文章,本文更多的从语境词语级别(contextualized word level),探讨注意力机制是否可以被解释。遗憾的是,本文作者也同样认为,注意力层不足以解释模型所关注的重点。

链接:https://arxiv.org/abs/1906.03731

可解释性对于很多 NLP 模型来说都是一个紧迫的问题。随着模型愈加复杂,而且要从数据中学习,确保我们能够理解模型为何做出某种决策非常重要。

谈论可解释性的现有工作只是开始评估计算出的注意力权重传达出怎样的信息。在本文中,研究者应用了一种基于中间表征擦除的不同分析方法来评估是否可以依赖注意力权重来解释输入到注意力层本身的相对重要性。他们发现:注意力权重只是对中间成分重要性的嘈杂预测,不应被视为决策的理由。

测试集

研究者将重点放在包含注意力的 5 类和 10 类文本分类模型上,因为解释文本分类的原因一直是可解释性研究中一个吸引研究者目光的领域(Yang et al., 2016; Ribeiro et al., 2016; Lei et al.,2016; Feng et al., 2018)。

一个可解释的模型不仅需要提供合理的解释,还要确保这些解释是模型做出决策的真实原因。注意,这种分析不依赖于数据的真实标签;如果一个模型产生了一个不正确的输出,但它还给出了一个可信的解释,说明哪些因素在计算中发挥重要作用,我们也认为该模型是可解释的。

中间表征擦除

研究者感兴趣的是一个注意力层的一些语境化输入(I ′ ⊂ I)对模型输出的影响。为了测试 I ′ 的重要性,研究者将模型的分类层运行了两次(见图 1):一次不做任何修改,一次用 I ′的注意力权重归零对注意力分布进行重归一化,与其他基于擦除的工作类似。接下来,研究者观察了结果对模型输出的影响。他们在注意力层进行擦除,以将注意力层的效果与它前面的编码器隔离开来。重归一化背后的原因是避免输出文档表征被以训练中从未遇到过的方式人为地缩小到接近 0,这可能使后续的度量无法代表模型在其映射输入的空间中的行为。

图 1:用本文中的方法计算与归零注意力权重对应的表征重要性,假设有四个输出类。

数据和模型

研究者探索了一个主题分类数据集(Yahoo Answers)和三个评估评级数据集(IMDB、Yelp 2017、Amazon)上的四个模型架构。每个数据集的统计数据见表 1.

表 1:实验中用到的数据集。

本文中的模型架构受到分层注意力网络的启发,后者是一种包含两个注意力层的文本分类模型,首先注意每个句子中的词 token,然后注意得到的句子表征。对文档表征进行分类的层与最后的 softmax 层时线性关系。

研究者对注意力的 softmax 公式进行了测试,包括 HAN 在内的大多数模型都使用了该公式。具体而言,研究者使用 Bahdanau 等人(2015)最初定义的加性公式(additive formulation)。

单一注意力权重的重要性

测试开始阶段,研究者探索了当只有一个权重可以移除时的注意力权重相对重要性。使得 i^∗ ∈ I 成为具有最高注意力的成分,α_i^∗作为其注意力。研究者以两种方式将 i^∗的重要性与一些其他注意力项的重要性进行了比较、

模型输出分布的 JS 散度

研究者希望比较 i^∗对模型输出分布的影响与从 I 统一抽取的随机注意力项 r 对应的影响。第一个方法是计算两个 JS 散度:一个是从只移除 i^∗后模型的原始输出分布到其原始输出分布的 JS 散度,另一个是只移除 r 后模型的输出分布的 JS 散度,并将它们进行比较。

他们用移除 i^∗后的输出 JS 散度减去移除 r 的输出 JS 散度:

公式一:∆JS 的计算公式

直观地说,如果 i^∗真的是最重要的,那么我们将期望 Eq. 1 是正的,这也是大部分时候的真实情况。此外,从图 3 可以看出,几乎所有的∆JS 值都接近于 0。通过图 4 可以看出,在 i^∗影响较小的情况下,i^∗的注意力和 r 注意力之间差别不大。这一结果比较鼓舞人心,表示在这些情况下,i^∗和 r 在注意力方面几乎是「相连的」。

图 3:注意力权重大小差异 vs HANrnn 的∆JS。

图 4:HANrnn 模型的测试实例计数,i^∗的 JS 散度更小。

然而,当开始考虑图 3 中正∆JS 值的大小时,注意力的可解释性变得更加模糊。研究者注意到,在数据集中,即使注意力权重的差异非常大,比如 0.4,许多正的∆JS 仍然非常接近于零。尽管最终发现,一旦∆α增大,∆JS 就会飙升,表明分布中只有一个非常高的注意力权重,关于 i^∗和 r 的影响究竟能有多大,这里就存在很大的争议了。

自注意力归零引起的决策翻转

由于注意力权重通常被认为是对于模型 argmax 决策的解释,所以第二个测试关注模型输出中另一个更直观的变化:决策翻转(decision flip)。为清楚起见,此处仅讨论 HANrnn 的结果,该结果反应了在其他架构中观察到的相同模式。

图 9:利用前面给出的关于 i^∗的定义,与一个不同的随机选择注意力项进行比较,上图数字是所有模型上的四个测试集中的每个决策翻转指示器变量类别的测试实例百分比。由于研究者要求随机项不能为 i^∗,他们从分析中排除了最终序列长度为 1 的所有实例。

在多数情况下,擦除 i^∗不会改变模型的决策(图中的「no」列)。这可能和分布在文档中的与分类相关的信号有关(例如,Yahoo Answers 数据集中一个关于「Sports」的问题可以用几句话表示「sports」,其中任何一句都足以正确分类)。

注意力层权重的重要性

为了解决注意力层的可解释性,并解决单权重测试中的问题,研究者采用了一种新的测试,用于研究多注意力层权重在预测器上的表现。

表 2:每个 HANrnn 的每个决策翻转指示器变量类别中测试实例的百分比。

多权重测试

对于假设的重要性排序,例如由注意力权重层表示的排序,研究者希望排序最高的注意力神经元可以作为模型决策的简明解释。这些解释越不简明,真正推动模型决策的注意力神经元的排名就越靠后,那么它就越不可能更好地解释重要性。换句话说,研究者希望,在有效的重要性排名中,最高排名的神经元中只需要使用一小部分重要的信息去引导模型的决策。

重要性排序的具体方法

研究者提出了两种重要性排序的具体方法。

第一种是对重要性进行随机排序。研究者希望这种排序产生一种表现糟糕,但可以和注意力权重降序方法进行对比的结果。

第二种排序方法,是对 attention 层的权重进行排序。这种方法需要对决策函数的梯度和每个注意力权重进行降序排列。因为每个数据集都是 5 个或者 10 个类,根据真实模型输出的向量的决策函数是:

注意力机制不是描述模型决策的理想方式

根据图 5 的结果分析,研究者发现,根据注意力权重进行重要性排序的方法,对有编码器的模型来说并不理想。尽管使用降序注意力权重移除中间表示的方法往往可以使决策翻转比随机排序更快,在许多情况下,这种方法比梯度排序或梯度-注意力-乘积排序的决策翻转效率更低。

此外,虽然基于乘积的排序比梯度排序往往(但不是总是)需要稍微少一点神经元的移除,研究者发现纯粹的无注意力的梯度排序和它(的表现)相当接近,且比纯粹基于注意力的排序表现更好。在 16 个有编码器的模型中的 10 个模型上,发现有超过 50% 的测试集案例中通过移除梯度比移除注意力实现了更小的决策翻转。研究发现,在每一个有编码器的模型上,仅基于梯度的排序导致决策翻转的速度比基于注意力的速度更快。在测试集上,这种案例的数量是其反例(注意力导致的决策翻转更快)的 1.6 倍。

决策翻转发生较迟

在每个排序机制和许多模型上,研究者都遇到了需要移除很大一部分神经元才能达到决策翻转目的的问题。对于 HAN 来说,这并不令人惊讶,因为这些注意力机制从更短的文本中计算注意力。对于 FLAN 来说,这种结果有些出乎意料。FLAN 经常在有几百个字符的序列上计算注意力,每个注意力的权重很可能非常小。

对于研究的模型,特别是 FLAN(使用上百个字符计算注意力),这一事实可能有解释性的问题。Lipton 认为,「如果一个人看一次就了解了整个模型,这个模型就是透明的」(The mythos of model interpretability. arXiv preprint arXiv:1606.03490.)。根据这种解释,如果某个重要的解释需要考虑几百个 token 的注意力权重,即使每一个注意力都很小,这依然会带来严重的透明性问题。

图 5:在三种模型架构上,在不同的排序方案下,第一次决策前被移除的项的分数分布发生翻转。

语境范围对注意力可解释性造成的影响

机器翻译中,以前的研究观察到,在一个完整序列上,循环神经编码器可能对 token 的信号进行移动,从而导致之后的注意力层反直觉地计算。研究者假设在文本分类的实验设置中,双向循环神经网络,如 HANrnn 和 FLANrnn 编码器可能选择从一部分输入 token 而非其他语境表示中调整分布信号。对比图 5 中的 FLANconv 和 FLAN-rnn 的决策翻转结果可以支持这个理论。研究者注意到,决策翻转的速度比两个基于 rnn 的模型都要快,说明双向循环网络可以有效地学习如何广泛地重新分布分类信号。相反的,卷积编码器只根据输入字符的前后两个字符学习语境表示。

在两种 HAN 架构的结果对比中可以看到一样的情况,虽然不太明显。这可能是因为 HAN 对更少的一部分 token 抽取语境表示(句的表示而非词),所以根据字符近邻抽取语境表示已经是完整序列的很大一部分了。

如果对比没有编码器的模型架构,这种差别会更加明显,如图 6 所示。对比其他两个模型架构,可以看到重要的模型部分被擦除后,决策翻转的速度下降。同时可以看到,随机排序比之前表现更好,说明决策边界更脆弱了,特别是在 Amazon 数据集上。这样说明,注意力相比梯度可能更加重要。

结论

注意力机制被认为是解释模型的一种工具,但研究者发现,注意力层和重要性不是充分对应的。

在某些情况下,两者是相关的。例如,当对比高注意力权重和低权重时,高注意力权重对模型的影响往往更大。然而,当考虑到在一些例子中,最高注意力权重无法产生很大的影响时,这种图景是暗淡的。

从多权重测试中,研究者发现注意力权重往往无法发现对模型最终决策发挥最重要作用的表示。甚至于,即使在基于注意力层的重要性排序翻转模型决策的速度比其他排序要快的情况下,零参与神经元的数量通常也太大,对解释(这一过程)毫无帮助。

研究人员同时注意到,语境范围先于注意力层影响了模型的决策。尽管注意力层很大程度上在未抽取语境表示的例子中更有效,在其他情况下,其获取决策依据的糟糕表现是一个问题。研究人员认为,在他们测试的设置中,注意力层不是一个用于发现特定输入是否造成了特定输出的理想工具。注意力层也许可以用其他方法变得可解释,但绝不是在重要性排序中。(在重要性排序问题上),注意力层无法解释模型决策。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 深度学习自然语言处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【哈工大SCIR Lab】Attention!注意力机制可解释吗?
NAACL 2019《Attention is Not Explanation》
zenRRan
2019/09/30
8400
【哈工大SCIR Lab】Attention!注意力机制可解释吗?
注意力机制不能提高模型可解释性?不,你这篇论文搞错了
注意力机制在 NLP 系统中起着重要作用,尤其是对于循环神经网络(RNN)模型。那么注意力模块提供的中间表征能否解释模型预测的推理过程,进而帮助人们了解模型的决策过程呢?近期,很多研究人员对这个话题产生了浓厚的兴趣。一篇题目为《Attention is not Explanation》(Jain and Wallace, 2019) 的论文表示,注意力机制并不能提高模型的可解释性。
机器之心
2019/09/10
8360
注意力机制不能提高模型可解释性?不,你这篇论文搞错了
万字干货分享 | 2020年了,你还在用注意力作可解释吗?
本文主要基于2020 EMNLP Workshop上的一篇综述文章,介绍了NLP可解释领域的重大争议——注意力机制是否能作为解释?而什么方法才是真正符合解释逻辑的?
TechFlow-承志
2020/11/23
1.5K0
万字干货分享 | 2020年了,你还在用注意力作可解释吗?
注意力模型深度综述:注意力类型和网络架构都有什么
注意力背后的直觉可以用人类的生物系统来进行最好的解释。例如,我们的视觉处理系统往往会选择性地聚焦于图像的某些部分上,而忽略其它不相关的信息,从而有助于我们感知。类似地,在涉及语言、语音或视觉的一些问题中,输入的某些部分相比其它部分可能更相关。通过让模型仅动态地关注有助于有效执行手头任务的部分输入,注意力模型引入了这种相关性概念。
机器之心
2019/04/29
1K0
注意力模型深度综述:注意力类型和网络架构都有什么
注意力能提高模型可解释性?实验表明:并没有
注意力机制(Bahdanau et al., 2014)引入了输入单元的条件分布来为下游的模块形成一个权重语境向量。这在神经自然语言处理结构中几乎是普遍的存在。注意力权重通常(明确地或者隐式地)被认为能够提供关于模型「内部工作机理」的信息:对一个给定的输出,你可以检查到模型分配了较大注意力权重的输入。Li 等人(2016)总结了这一在自然语言处理中普遍持有的观点:「注意力机制为神经模型的工作方式提供了一种重要的解释方式」。事实上,注意力可以提供模型解释的说法在文献中是很常见的。
机器之心
2019/04/09
6600
注意力能提高模型可解释性?实验表明:并没有
一文探讨可解释深度学习技术在医疗图像诊断中的应用
机器之心分析师网络 作者:仵冀颖 编辑:Joni 本文依托于综述性文章,首先回顾了可解释性方法的主要分类以及可解释深度学习在医疗图像诊断领域中应用的主要方法。然后,结合三篇文章具体分析了可解释深度学习模型在医疗图像分析中的应用。 作为一种领先的人工智能方法,深度学习应用于各种医学诊断任务都是非常有效的,在某些方面甚至超过了人类专家。其中,一些计算机视觉方面的最新技术已经应用于医学成像任务中,如阿尔茨海默病的分类、肺癌检测、视网膜疾病检测等。但是,这些方法都没有在医学领域中得以广泛推广,除了计算成本高、训练
机器之心
2023/03/29
8030
一文探讨可解释深度学习技术在医疗图像诊断中的应用
AAAI/CVPR论文详解 | 万字长文了解可解释AI工具及技术的最新进展
机器之心分析师网络 作者:仵冀颖 编辑:H4O 本文聚焦于研究和开发可解释性工具的内容,对AAAI-2022《Tutorial on Explanations in Interactive Machine Learning》提及的三类可解释性工具/方法(局部可解释性、规则可解释性、概念可解释性)进行了解读,重点了解可解释性工具和方法的最新研究进展。 1 背景 近年来,学术界、工业界以及政府部门对 AI 伦理的重视程度日益加强,从 AI 伦理监管政策到 AI 伦理技术手段,提升 AI 伦理合规性和打造 AI
机器之心
2022/09/14
4060
AAAI/CVPR论文详解 | 万字长文了解可解释AI工具及技术的最新进展
如何解释AI做出的决策?一文梳理算法应用场景和可解释性
机器之心分析师网络 作者:Jiying 编辑:H4O 本文结合《Explanation decisions made with AI》指南,重点对算法的应用场景和可解释性分析进行了梳理总结。 英国的 Information Commissioner’s Office (ICO)和 The Alan-Turing Institute 联合发布了《Explanation decisions made with AI》指南。该指南旨在为机构和组织提供实用建议,以帮助向受其影响的个人解释由 AI 提供或协助的程序
机器之心
2022/04/13
6860
如何解释AI做出的决策?一文梳理算法应用场景和可解释性
人工智能(XAI)可解释性的研究进展!
本文从数据为中心的角度,研究了数据收集、处理和分析如何有助于可解释的人工智能(XAI)。将现有工作分为三类,分别服务于对深度模型的解释、对训练数据的启示和对领域知识的洞察,并提炼出针对不同模式的数据挖掘操作和DNN行为描述符的数据挖掘方法,提供了一个全面的、以数据为中心的XAI从数据挖掘方法和应用的角度进行的考察。
算法进阶
2024/06/13
6590
人工智能(XAI)可解释性的研究进展!
JMC|用于化合物优化中性质预测的可解释机器学习
大多数最先进的 ML 模型都具有黑匣子特性。在ML 模型的预测性能和解释能力之间通常需要权衡。
智药邦
2022/03/04
1.2K0
JMC|用于化合物优化中性质预测的可解释机器学习
Attention的可解释性及其在网络结构中的应用
本文首先讨论了使用注意力的关键神经网络体系结构;接着讨论了在神经网络中加入注意力是如何带来显著的性能提高的,通过Attention的可解释性,对神经网络内部工作的有了更深入的了解;最后讨论了三个应用领域的注意建模的应用。
ShuYini
2020/06/23
8600
Attention的可解释性及其在网络结构中的应用
大模型可解释性你能理得清吗?综述已来,一文解你疑惑
大规模语言模型在自然语言处理方面展现出令人惊讶的推理能力,但其内在机理尚不清晰。随着大规模语言模型的广泛应用,阐明模型的运行机制对应用安全性、性能局限性和可控的社会影响至关重要。
机器之心
2023/09/27
1.3K0
大模型可解释性你能理得清吗?综述已来,一文解你疑惑
7 papers | 贾佳亚等人3D目标检测新论文;美国20年AI技术路线图
2. A 20-Year Community Roadmap for Artificial Intelligence Research in the US
机器之心
2019/08/20
6870
XAI有什么用?探索LLM时代利用可解释性的10种策略
你是否也好奇,在大模型时代,可解释性人工智能技术(XAI)有怎样的使用价值?近日,来自佐治亚大学、新泽西理工学院、弗吉尼亚大学、维克森林大学、和腾讯 AI Lab 的研究者联合发布了解释性技术在大语言模型(LLM)上的可用性综述,提出了 「Usable XAI」 的概念,并探讨了 10 种在大模型时代提高 XAI 实际应用价值的策略。
机器之心
2024/04/12
2290
XAI有什么用?探索LLM时代利用可解释性的10种策略
大模型入门指南:基本技术原理与应用
随着计算能力的提升和数据量的增加,深度学习领域的大型神经网络模型(Big Model)在各种任务上取得了显著的性能提升,包括计算机视觉、自然语言处理、语音识别等。本文带着大家初步了解一下大模型的基本技术原理,包括深度神经网络、激活函数、损失函数、优化算法、正则化和模型结构等。
陆业聪
2024/07/23
5130
大模型入门指南:基本技术原理与应用
就喜欢看综述论文:情感分析中的深度学习
选自arXiv 作者:Lei Zhang、Shuai Wang、Bing Liu 机器之心编译 近年来,深度学习有了突破性发展,NLP 领域里的情感分析任务逐渐引入了这种方法,并形成了很多业内最佳结果。本文中,来自领英与伊利诺伊大学芝加哥分校的研究人员对基于深度学习的情感分析研究进行了详细论述。 情感分析或观点挖掘是对人们对产品、服务、组织、个人、问题、事件、话题及其属性的观点、情感、情绪、评价和态度的计算研究。该领域的开始和快速发展与社交媒体的发展相一致,如评论、论坛、博客、微博、推特和社交网络,因为这是
机器之心
2018/05/11
2K0
斯坦福训练Transformer替代模型:1.7亿参数,能除偏、可控可解释性强
以 GPT 为代表的大型语言模型已经并还将继续取得非凡成就,但它们也存在着众所周知的问题,比如由于训练集不平衡导致的偏见问题。
机器之心
2023/08/07
3220
斯坦福训练Transformer替代模型:1.7亿参数,能除偏、可控可解释性强
机器学习模型的“可解释性”到底有多重要?
【导读】我们知道,近年来机器学习,特别是深度学习在各个领域取得了骄人的成绩,其受追捧的程度可谓是舍我其谁,但是有很多机器学习模型(深度学习首当其冲)的可解释性不强,这也导致了很多论战,那么模型的可解释
WZEARW
2018/04/13
15.2K0
机器学习模型的“可解释性”到底有多重要?
独家 | 感悟注意力机制
作者:Greg Mehdiyev, Ray Hong, Jinghan Yu, Brendan Artley翻译:陈之炎校对:ZRX 本文约2800字,建议阅读12分钟本文由Simon Fraser大学计算机科学专业硕士生撰写并维护,同时这也是他们课程学分的一部分。 本博由Simon Fraser大学计算机科学专业硕士生撰写并维护,同时这也是他们课程学分的一部分。 想了解更多关于该项目的信息,请访问: sfu.ca/computing/mpcs 简介 看到这张照片时,首先映入眼帘的是什么?相信大多数人的眼
数据派THU
2022/03/04
4520
多种注意力机制详解及其源码
注意力机制的发展历程体现了人工智能领域对模型表达能力和效率的不断追求。从最初在序列模型中的应用,到Transformer模型的提出,再到当前在各个领域的广泛应用,注意力机制已经成为现代人工智能模型的核心组成部分。随着研究的深入,注意力机制将继续演化,推动人工智能技术的发展。因此提出更好的注意力机制,对于模型性能的提升很有帮助。
Srlua
2024/12/21
4150
多种注意力机制详解及其源码
推荐阅读
相关推荐
【哈工大SCIR Lab】Attention!注意力机制可解释吗?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档